A distributed code for color in natural scenes derived from center-surround filtered cone signals
نویسندگان
چکیده
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes.
منابع مشابه
Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes.
To achieve color vision, the brain has to process signals of the cones in the retinal photoreceptor mosaic in a cone-type-specific way. We investigated the possibility that cone-type-specific wiring is an adaptation to the statistics of the cone signals. We analyzed estimates of cone responses to natural scenes and found that there is sufficient information in the higher order statistics of L- ...
متن کاملSpatiochromatic Receptive Field Properties Derived from Information-Theoretic Analyses of Cone Mosaic Responses to Natural Scenes
Neurons in the early stages of processing in the primate visual system efficiently encode natural scenes. In previous studies of the chromatic properties of natural images, the inputs were sampled on a regular array, with complete color information at every location. However, in the retina cone photoreceptors with different spectral sensitivities are arranged in a mosaic. We used an unsupervise...
متن کاملCircuitry for color coding in the primate retina.
Human color vision starts with the signals from three cone photoreceptor types, maximally sensitive to long (L-cone), middle (M-cone), and short (S-cone) wavelengths. Within the retina these signals combine in an antagonistic way to form red-green and blue-yellow spectral opponent pathways. In the classical model this antagonism is thought to arise from the convergence of cone type-specific exc...
متن کاملBio-inspired color image enhancement model
Human being can perceive natural scenes very well under various illumination conditions. Partial reasons are due to the contrast enhancement of center/surround networks and opponent analysis on the human retina. In this paper, we propose an image enhancement model to simulate the color processes in the human retina. Specifically, there are two center/surround layers, bipolar/horizontal and gang...
متن کاملInformation limits on neural identification of colored surfaces in natural scenes.
If surfaces in a scene are to be distinguished by their color, their neural representation at some level should ideally vary little with the color of the illumination. Four possible neural codes were considered: von-Kries-scaled cone responses from single points in a scene, spatial ratios of cone responses produced by light reflected from pairs of points, and these quantities obtained with shar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013